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Abstract

Stochastic gradient descent efficiently estimates maximum likelihood logistic regression coefficients

from sparse input data. Regularization with respect to a prior coefficient distribution destroys the

sparsity of the gradient evaluated at a single example. Sparsity is restored by lazily shrinking a coefficient

along the cumulative gradient of the prior just before the coefficient is needed.

1 Multinomial Logistic Model

A multinomial logistic model classifies d-dimensional real-valued input vectors x ∈ Rd into one
of k outcomes c ∈ {0, . . . , k − 1} using k − 1 parameter vectors β0, . . . , βk−2 ∈ Rd:

p(c | x, β) =


exp(βc · x)

Zx
if c < k − 1

1
Zx

if c = k − 1

(1)

where the linear predictor is inner product:

βc · x =
∑
i<d

βc,i · xi (2)

The normalizing factor in the denominator is the partition function:

Zx = 1 +
∑
c<k−1

exp(βc · x) (3)

2 Corpus Log Likelihood

Given a sequence of n data points D = 〈xj , cj〉j<n, with xj ∈ Rd and cj ∈ {0, . . . , k − 1}, the
log likelihood of the data in a model with parameter matrix β is:

log p(D | β) = log
∏
j<n

p(cj | xj , β) =
∑
j<n

log p(cj | xj , β) (4)

3 Maximum Likelihood Estimate

The maximum likelihood (ML) estimate β̂ is the value of β maximizing the likelihood of the
data D:

β̂ = arg max
β

p(D | β) = arg max
β

log p(D | β) (5)
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4 Maximum a Posteriori Estimate

Given a prior probability density p(β) over a parameter matrix β, the maximum a posteriori
(MAP) estimate β̂ is:

β̂ = arg max
β

p(β | D) (6)

= arg max
β

p(D | β) p(β)

p(D)

= arg max
β

p(D | β) p(β)

4.1 Gaussian Prior

A Gaussian prior for parameter vectors with zero means and diagonal covariance is specified
by a variance parameter σ2

i for each dimension i < d. The prior density for the full parameter
matrix is:

p(β) =
∏

c<k−1

∏
i<d

Norm(0, σ2
i )(βc,i) (7)

where the normal density function with mean 0 and variance σ2
i is:

Norm(0, σ2
i )(βc,i) =

1

σi
√

2π
exp

(
−
β2
c,i

2σ2
i

)
(8)

4.2 Laplace Prior

A Laplace, or double-exponential, prior with zero means and diagonal covariance is specified
by a variance parameter σ2

i for each dimension i < d. The prior density for the full parameter
matrix is:

p(β) =
∏

c<k−1

∏
i<d

Laplace(0, σ2
i )(βc,i) (9)

where the Laplace density function with mean 0 and variance σ2
i is:

Laplace(0, σ2
i )(βc,i) =

√
2

2σi
exp

(
−
√

2
| βc,i |
σi

)
(10)

The Laplace prior has thinner tails than the Gaussian, and thus concentrates posteriors
closer to its zero mean than a Gaussian of the same variance.

4.3 Cauchy Prior

A Cauchy, or Lorentz, distribution is a Student-t distribution with one degree of freedom. A
Cauchy prior centered at zero with scale λ > 0 has density:

Cauchy(0, λ)(βc,i) =
1

πλ

(
1 +

(
βc,i

λ

)2
) =

1

π

(
λ

β2
c,i + λ2

)
(11)

The Cauchy prior does not have a mean or variance; the integrals diverge. The distribution
is symmetric, and centered around its median, zero. Larger scale values, like larger variances,
stretch the distribution out to have fatter tails. The Cauchy prior has fatter tails than the
Gaussian prior and thus has less of a tendency to concentrate posterior probability near the
prior median.

4.4 Uniform Prior

The uniform, or uninformative, prior has a constant density:

p(β) ∝ 1 (12)
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The uniform prior is improper in the sense that the integral of the density diverges:∫
Rd

1 dx =∞ (13)

The maximum likelihood estimate is the MAP estimate under an (improper) uninformative
uniform prior:

β̂ = arg max
β

p(D | β) p(β) (14)

= arg max
β

p(D | β)

An equivalent formulation is as a Gaussian or Laplace prior with infinite variance. As σ2
i →

∞, the distributions Norm(0, σ2
i ) and Laplace(0, σ2

i ) flatten toward uniform and the gradient
with respect to parameters βc,i (see section 6) approaches zero.

5 Error Function

The error function ErrR is indexed by the type of prior R, which must be one of maximum
likelihood (ML), Laplace (L1), Gaussian (L2) or Cauchy (t1). The error is the sum of the
likelihood error Err` and the prior error ErrR for prior type R:

ErrR(β,D, σ2) = Err`(D,β) + ErrR(β, σ2) (15)

= − log p(D | β)− log p(β | σ2)

=
∑
j<n

− log p(cj | xj , β) +
∑
i<d

− log p(βi | σ2
i )

=
∑
j<n

Err`(cj , xj , β) +
∑
i<d

ErrR(βi, σ
2
i )

The last line introduces notation for the contribution to the error due to the likelihood of a
single case 〈xj , cj〉 and a single parameter βi.

6 Error Gradient

The gradient of the error function is the collection of partial derivatives of the error function
with respect to the parameters βc,i:

∇c,i ErrR(D,β, σ2) =
∂

∂βc,i
ErrR(D,β, σ2) (16)

=
∂

∂βc,i
Err`(D,β) + ErrR(β, σ2) (17)

=
∂

∂βc,i

(
− log p(D | β)− log p(β | σ2)

)
= − ∂

∂βc,i
log p(D | β)− ∂

∂βc,i
log p(β | σ2)

The derivatives distribute through the cases for the data log likelihood:

∂

∂βc,i
log p(D | β) =

∑
j<n

∂

∂βc,i
log p(cj | xj , β) (18)

with a single case 〈xj , cj〉 contributing the following to the gradient of the error for output
category c at input dimension i:

∂

∂βc,i
log p(cj | xj , β)
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=
∂

∂βc,i
log

exp(βcj · xj)
1 +

∑
c′<k−1 exp(βc′ · xj)

=
∂

∂βc,i
log exp(βcj · xj)−

∂

∂βc,i
log(1 +

∑
c′<k−1

exp(βc′ · xj))

=
∂

∂βc,i
(βcj · xj)−

1

1 +
∑
c′<k−1 exp(βc′ · xj)

∂

∂βc,i
(1 +

∑
c′<k−1

exp(βc′ · xj))

= xj,iI(c = cj)−
1

1 +
∑
c′<k−1 exp(βc′ · xj)

∑
c′<k−1

∂

∂βc,i
exp(βc′ · xj)

= xj,iI(c = cj)−
1

1 +
∑
c′<k−1 exp(βc′ · xj)

∑
c′<k−1

exp(βc′ · xj)
∂

∂βc,i
(βc′ · xj)

= xj,iI(c = cj)−
exp(βc,i · xj)

1 +
∑
c′<k−1 exp(βc′ · xj)

xj,i

= xj,iI(c = cj)− p(c | xj , β)xj,i

= xj,i(I(c = cj)− p(c | xj , β))

where the indicator function is:

I(cj = c) =

{
1 if cj = c

0 if cj 6= c
(19)

The residual for training example j for outcome category c is the difference between the outcome
and the model prediction:

Rc,j = I(cj = c)− p(c | xj , β) (20)

The derivatives also distribute through parameters for the prior:

∂

∂βc,i
log p(β | σ2) =

∂

∂βc,i

∑
c′<k−1

∑
i′<d

log p(βc′,i′ | σ2
i′) (21)

=
∂

∂βc,i
log p(βc,i | σ2

i )

For the Gaussian prior:

∂

∂βc,i
log p(βc,i | σ2

i ) =
∂

∂βc,i
log

1

σi
√

2π
exp(−

β2
c,i

2σ2
i

) (22)

=
∂

∂βc,i
log

1

σi
√

2π
+ log exp(−

β2
c,i

2σ2
i

)

=
∂

∂βc,i
−
β2
c,i

2σ2
i

= −βc,i
σ2
i

For the Laplace prior:

∂

∂βc,i
log p(βc,i | σ2

i ) =
∂

∂βc,i
log

√
2

2σi
exp(−

√
2
| βc,i |
σi

) (23)

=
∂

∂βc,i
log exp(−

√
2
| βc,i |
σi

)

=
∂

∂βc,i
−
√

2
| βc,i |
σi
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=


−
√

2
σi

if βc,i > 0
√

2
σi

if βc,i < 0

For the Cauchy prior:

∂

∂βc,i
log p(βc,i | λi) =

∂

∂βc,i
log

(
1

π

(
λi

β2
c,i + λ2

i

))
(24)

=
∂

∂βc,i
− log π + log λi − log(β2

c,i + λ2
i )

= − ∂

∂βc,i
log(β2

c,i + λ2
i )

= − 1

β2
c,i + λ2

i

∂

∂βc,i
(β2
c,i + λ2

i )

= − 2βc,i
β2
c,i + λ2

i

7 Error Hessian

The Hessian of the error function is the symmetric matrix of second derivatives with respect to
pairs of parameters. In the multinomial setting with k − 1 parameter vectors of dimensionality
d, the Hessian matrix itself is of dimensionality ((k − 1)d)× ((k − 1)d) with rows and columns
indexed by pairs of categories and dimensions (c, i), with c ∈ {0, . . . , k − 2} and i < d.

The value of the Hessian is the sum of the value of the Hessian of the likelihood and the
Hessian of the prior. The Hessian for the likliehood function at row (c, i) and column (b, h) is
derived by differentiating with respect to parameters βc,i and βb,h.

∇2
(c,i),(b,h)Err`(D,β) =

∂2

∂βc,i∂βb,h
Err`(D,β) (25)

=
∂

∂βb,h
∇c,i Err`(D,β)

=
∑
j<n

∂

∂βb,h
∇c,i Err`(xj , cj , β)

=
∑
j<n

∂

∂βb,h
xj,i(I(c = cj)− p(c | xj , β))

where:

∂

∂βb,h
xj,i(I(c = cj)− p(c | xj , β))

=
∂

∂βb,h
− xj,i p(c | xj , β)

= −xj,i
∂

∂βb,h

exp(βc · xj)
1 +

∑
c′<k−1 exp(βc′ · xj)

= −xj,i
(

1

1 +
∑
c′<k−1 exp(βc′ · xj)

∂

∂βb,h
exp(βc · xj)

+ exp(βc · xj)
∂

∂βb,h

1

1 +
∑
c′<k−1 exp(βc′ · xj)

)

= −xj,i

 exp(βc · xj)
1 +

∑
c′<k−1 exp(βc′ · xj)

∂

∂βb,h
βc · xj
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+ exp(βc · xj)
(

1

1 +
∑
c′<k−1 exp(βc′ · xj)

)2
∂

∂βb,h

1 +
∑

c′<k−1

exp(βc′ · xj)


= −xj,i

(
p(c | xj , β)I(c = b)xj,h

+ p(c | xj , β)
1

1 +
∑
c′<k−1 exp(βc′ · xj)

∂

∂βb,h
exp(βb · xj)

)

= −xj,i p(c | xj , β)

(
I(c = b)xj,h +

exp(βb · xj)
1 +

∑
c′<k−1 exp(βc′ · xj)

∂

∂βb,h
βb · xj

)
= −xj,i p(c | xj , β) (I(c = b)xj,h + p(b | xj , β)xj,h)

= −xj,i xj,h p(c | xj , β) (I(c = b) + p(b | xj , β))

The priors contribute their own terms to the Hessian, but the only non-zero contributions
are on the diagonals for Cauchy and Gaussian priors. The maximum likelihood prior is constant,
and thus has a zero gradient and zero Hessian.

For the Laplace prior:

∇2
(c,i),(b,h)ErrL1(β | σ2) =

∂

∂βb,h ∂βc,i
ErrL1(β | σ2) (26)

=
∂

∂βb,h
− signum(βc,i)

σ2
i

= 0

For the Gaussian prior:

∇2
(c,i),(b,h)ErrL2(β | σ2) =

∂

∂βb,h ∂βc,i
ErrL2(β | σ2) (27)

=
∂

∂βb,h
− βc,i

σ2
i

= −I((c, i) = (b, h))
1

σ2
i

For the Cauchy prior:

∇2
(c,i),(b,h)Errt1(β | λ2) (28)

=
∂

∂βb,h ∂βc,i
Errt1(β | λ2)

=
∂

∂βb,h
− 2βc,i
β2
c,i + λ2

i

= −I((c, i) = (b, h))
∂

∂βc,i

2βc,i
β2
c,i + λ2

i

= −I((c, i) = (b, h))

(
2βc,i

∂

∂c,i

1

β2
c,i + λ2

i

+
1

β2
c,i + λ2

i

∂

∂c,i
2βc,i

)

= −I((c, i) = (b, h))

(
2βc,i

(
1

β2
c,i + λ2

i

)2
∂

∂c,i
(β2
c,i + λ2

i ) +
2βc,i

β2
c,i + λ2

i

)

= −I((c, i) = (b, h))

((
2βc,i

β2
c,i + λ2

i

)2

+
2βc,i

β2
c,i + λ2

i

)

8 Concavity and Existence of Solution

For any of the priors, uninformative, Cauchy, Gaussian or Laplace, the error function is a
concave function of the feature vectors, so that for all vectors β, β′ ∈ Rd and all λ such that
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0 ≤ λ ≤ 1:

ErrR(D, (λβ + (1− λ)β′), σ2) ≥ λErrR(D,β, σ2) + (1− λ)ErrR(D,β′, σ2) (29)

To show that a function is concave, it suffices to show that its negative Hessian is posi-
tive semi-definite; this generalizes the negative second derivative condition required for a one-
dimensional function to be concave. A square matrix M is positive semi-definite if and only if
for every (column) vector x:

x>Mx ≥ 0 (30)

which evaluating the product, amounts to:∑
i

∑
j

xi xjMi,j ≥ 0 (31)

For the maximum likelihood error, this condition amounts to requiring for all vectors z of
dimensionality c(k − 1):

−z>∇2Err`(D,β) z ≥ 0 (32)

which is equivalent to:

−
∑
(c,i)

∑
(b,h)

zc,i zb,h∇2
(c,i),(b,h)Err`(D,β) ≥ 0 (33)

which plugging in the Hessian’s value, yields:∑
(c,i)

∑
(b,h)

∑
j<n

zc,i zb,h xj,i xj,h p(c | xj , β) (I(c = b) + p(b | xj , β)) ≥ 0 (34)

For the Cauchy and Gaussian priors with finite positive scale or variance, the gradient of the
error function is strictly concave, which strengthens this requirement for any pair of unequal
vectors β, β′ such that β 6= β′ and any λ such that 0 < λ < 1 to:

ErrR(D, (λβ + (1− λ)β′), σ2) > λErrR(D,β, σ2) + (1− λ)ErrR(D,β′, σ2) (35)

To show that a function is strictly concave, it suffices to show that its negative Hessian is
positive definite. A square matrix M is positive definite if and only if for every non-zero vector
x:

x>M x > 0 (36)

With a Cauchy or Gaussian prior, the Hessian is positive definite, and hence the combined error
function is positive definite.

With a concave error function, there exists a MAP parameter estimate β̂ exists where the
gradient evaluated at β̂ is zero:

∇ErrR(D,β, σ2)(β̂) =
∂

∂β
ErrR(D,β, σ2)(β̂) = 0 (37)

In the maximum likelihood setting or with uninformative priors for some dimensions in other
cases, there may not be a unique solution. With strictly concave error functions, as arises with
finite priors, there will be a unique MAP estimate.

9 MAP Estimate Expectation Constraints

In maximum likelihood estimation, the estimated parameters β̂ are the zero of the gradient at
every category c < k − 1 and dimension i < d:

(∇c,iErr`(D,β)) (β̂c,i) =

(
∂

∂βc,i
Err`(D,β)

)
(β̂c,i) (38)

=
∑
j<n

xj,i
(

I(cj = c)− p(c | xj , β̂)
)

= 0
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and therefore β̂ satisfies: ∑
j<n

xj,i p(c | xj , β̂) =
∑
j<n

xj,i I(cj = c) (39)

In words, the expectation of the count of a feature i with a model parameterized by β̂ over all
of the training cases is equal to the empirical count of the feature in the training data.

With informative priors, the gradient of the full error function must be zero at every dimen-
sion of every category parameter vector:(

∇c,iErrR(D,β, σ2)
)

(β̂c,i) =
(
∇c,iErr`(D,β) +∇c,iErrR(β, σ2)

)
(β̂c,i) (40)

= 0

which substituting in the gradient of the likelihood-based error reduces to:∑
j<n

xj,i p(c | xj , β̂) =
∑
j<n

xj,i I(cj = c)−
(
∇c,iErrR(β, σ2)

)
(β̂c,i) (41)

=
∑
j<n

xj,i I(cj = c)−∇c,iErrR(βc,i, σ
2
i )(β̂c,i)

In this case, the feature expectations are equal to the empirical feature counts discounted by
the prior regularization. For instance, for the Gaussian prior, this amounts to the expectations
matching the empirical counts discounted by the prior:

∑
j<n

xj,i p(c | xj , β̂) =

(∑
j<n

xj,i I(cj = c)

)
− β̂c,i

σ2
i

(42)

10 Stochastic Gradient Descent

Gradient descent algorithms initialize the parameter vectors and then descend along the gradient
of the error function until reaching minimum error.

10.1 Batch versus Online Algorithms

Traditional gradient descent methods like conjugate gradient compute the gradient of the entire
corpus and then do a line search along that gradient to find the optimal learning rate (distance)
for an update along the gradient. The line searches are expensive because they require log
likelihood computations over the entire corpus which update the parameters along the gradi-
ent, which is typically non-zero in every dimension over the entire corpus. And the directions
searched zig-zag because after the update along the gradient, the next update must be conjugate
in the sense of being orthogonal as a vector to the previous update. Each corpus gradient is
unlikely to point at the MAP solution, so a zig-zag path is charted toward an eventual solution.

Stochastic search methods such as stochastic gradient descent takes steps in the direction
of the contribution of a single training case 〈xj , cj〉 and fraction of the prior to the gradient.
Incremental updates allow each iteration through the data to steer more directly in the direction
of the global minimum by adjusting direction after each training instance, resulting in a finer-
grained zig-zag toward the global minimum error.

There are two advantages of stochastic approaches. First, they only require the parameters
and a single training example to be stored in memory. Algorithms with this property are said
to be online algorithms. In order to converge, most online algorithms require multiple passes
through the data. The algorithm itself doesn’t change if it’s run over the same data more than
once or run over fresh data.

With a huge amount of data, it is typically better to use an online algorithm that visits each
data element once or a few times rather than sampling a smaller batch that can be processed
with batch algorithms.

Intermediate algorithms that take batches of larger than one training example but smaller
than the whole corpus are also popular.
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10.2 Code Listing

A full listing of an SGD optimizer is provided as Algorithm 1 on page 19. The error function
ErrR is indexed by the prior, with ml being the uninformative prior, L2 being the Gaussian
prior, L1 being the Laplace prior, and t1 being the Cauchy prior.

10.3 Caching

For efficiency, values in the loops such as the exponentiated linear predictors and probability
estimates should be stored rather than recomputed.

10.4 Learning Rate

With an appropriate choice of learning rate, stochastic gradient descent is guaranteed to con-
verge. The conditions on the learning rate ηe, the learning rate in epoch e, convergence requires
the sum of all learning rates to diverge: ∑

e<∞

ηe =∞ (43)

and the sum of all squared learning rates to converge:∑
e<∞

η2
e <∞ (44)

Together, the first equation says the learning rate moves fast enough and far enough, and the
second equation says it eventually settles down to a fine enough grain to get within ε of the
optimal solution. In practice, learning for large-scale problems is typically cut-off at only a few
decimal places of precision.

It is possible to use an adaptive learning rate that depends on features of the data and the
algorithm’s progress. For instance, a sample of the data points may be taken and a (typically
coarse) line search used to evaluate an optimal stochastic learning rate for that sample. This
empirically estimated rate may then be applied to subsequent examples. In the limit of samples
equal to the entire data set, this reduces to conjugate gradient search.

Rather than a line search, rates fractionally above or below the current rate may be explored
and the learning rate adjusted accordingly. Momentum terms are often added to the learning
rate on a dimension by dimension basis, making the learning rate a sum of the last learning
rate and the current learning rate. Momentum has the possibility to wildly overshoot, so it is
typically combined with evaluations that will reduce the learning rate if the current learning
rate increases the likelihood error.

For any of these algorithms to converge, they must first get close to a solution then gradually
lower the learning rate until convergence.

10.5 On-the-Fly Log Likelihood Calculation

Algorithm 1 for SGD calculates the log likelihood of the corpus at the end of an epoch after the
parameters have been updated.

The log likelihood of the corpus plus log prior may be computed on the fly rather than in
a standalone loop. In particular, the value of p(cj | xj , β) computed in the inner loop may be
used. The contribution of the prior can be added at the end of the loop.

With parameter vectors changing at each training case, on-the-fly likelihood calculations
don’t reflect the contribution of training on the current example. In practice, training on the
example being evaluated and the overall stochasticity of the algorithm tends to improve the
model throughout an epoch, so that the on-the-fly calculation is an underestimate of the log
likelihood in the final parameterization for an epoch.

10.6 Clipping Regularization at Zero

The regularization may be clipped so that subtracting the regularization gradient will never
change the sign of a parameter. The original inner loop:

βc ← βc + ηe∇c Err`(xj , cj , β) + ηe∇c ErrR(βc, σ
2) (45)
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may be modified to increment the likelihood gradient and then clip the regularization increment:

βc ← βc + ηe∇c Err`(xj , cj , β)

if (βc < 0) then

βc ← min(0, βc + ηe∇c ErrR(βc, σ
2))

else

βc ← max(0, βc + ηe∇c ErrR(βc, σ
2))

(46)

10.7 Sparseness of Updates

The inner loop is the stochastic update of the parameters along the contribution to the gradient
of a single training case 〈xj , cj〉:

βc ← βc + ηe ∇c ErrR(xj , cj , β, σ
2) (47)

where the gradient is expanded as:

∇c ErrR(xj , cj , β, σ
2) = xj · (I(c = cj)− p(c | xj , β)) +

∇c ErrR(β, σ2)

n
(48)

The update from the gradient of the log likelihood only touches dimensions for which the
input vector xj is non-zero. Thus if the inputs are sparse, the gradient update for log likelihood
is sparse.

In the maximum likelihood setting, there is no gradient for the prior and thus the updates
remain sparse. But in the case of regularization, the gradient of the log prior density is non-zero
at every non-zero parameter dimension.

11 Lazy Regularized Stochastic Gradient Descent

A simple solution to deal with the density of regularization updates is to batch them up and
only do them so often. With a batch size larger than the feature density, this will actually be
the most efficient approach. The downside is the loss in stochasticity of the search.

Even though the parameter vectors are regularized at each step, only the non-zero dimensions
of an input xj need be accessed. The regularizations may thus be computed in a lazy fashion,
just before they are needed.

The vector u of dimensionality d stores in ui the last epoch in which dimension i’s parameter
value was shrunk by regularization. Then, when an input xj for which xj,i 6= 0 arises, the
parameters βc,i for all categories c are caught up with regularization scheme R using:

uc,i − q
n

∇c,i ErrR(βc,i, σ
2) (49)

The standard regularized stochastic gradient descent algorithm is not equivalent to regu-
larizing all at once. Suppose a coefficient starts at value βc,i. After one step of stochastic
regularization using a Gaussian prior with variance σ2, assuming for simplicity a learning rate
of ηi = 1, the value will be:

β(1) = β(0) − 1

n

β(0)

σ2
(50)

After two updates:

β(2) = β(1) − 1

n

β(1)

σ2
(51)

and in general, at the k-th step:

β(k) = β(0)

(
1−

(
1

nσ2

)k)
(52)

Thus a single update regularizing at a rate of k/n does not produce the same result as k
updates at the rate of 1/n. In the algorithm, there is no nonlinear adjustment for batch size.
The lower amount of stochasticity simply approaches the non-stochastic regularization, which
should actually be more accurate than the stochastic approximation.
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For the Laplace prior, the gradient does not depend on the current value of β, so a stochastic
update of size k/n is the same as k stochastic updates of batch size 1/n:

β(k) = β(0) − k
√

2

nσ
(53)

Even clipping to zero has the same effect with the Laplace prior.

Appendices

A Separability and Divergence

The training data 〈xj , cj〉j<n for a two-category problem (cj ∈ {0, 1}) is linearly separable if
there exists a parameter vector β such that β · xj > 0 if and only if cj = 0. In this case, the
parameter vector β leads to a perfect first-best classifier for the training data. But the problem
is that there is no maximum likelihood solution, because scaling β to be larger strictly increases
the log likelihood:

p(0 | xj , β) =
exp(β · xj)

1 + exp(β · xj)
(54)

If λ > 1, then λβ produces a higher likelihood estimate than β:

exp((λβ) · xj)
1 + exp((λβ) · xj)

>
exp(β · xj)

1 + exp(β · xj)
(55)

with

lim
λ→∞

exp(λβ · xj)
1 + exp(λβ) · xj)

= 1 (56)

So there is no maximum likelihood solution; the larger the scaling λ, the closer the likelihood
gets to 1.

With an informative prior of finite positive variance or scale, the prior will offset the tendency
of the parameter vector to grow without bound and a unique solution will exist that balances
the prior and the likelihood; eventually the gain from scaling β will be offset by the cost of
scaling β.

If the convergence conditions for the SGD estimation algorithm were defined over the pa-
rameters, the algorithm will not converge with linearly separable training data. But with con-
vergence defined in terms of corpus log likelihood improvements dropping below a threshold,
the algorithm will terminate even in the face of separable training data.

B Non-Linearity and Interactions

Some classification problems which are not (approximately) linear in the input features may be
made (approximately) linear by introducing non-linear functions of the input features. Typically
these will be quadratic or logarithmic. For instance, a dimension i whose response is quadratic
may be expanded so that input vectors contain xi and another dimension xj whose value is
xj = x2

i .
Although logistic regression remains linear in the expanded feature space, it is non-linear in

the original space.
Logistic regression treats the dimensions in the input independently, but it is sometimes

helpful to model interactions of features xi and xj . This is typically done by introducing a new
feature xk = xixj whose value is the product of the original features. In the binary feature case,
the resulting interaction features will be binary if coded as 0 and 1.

C Binomial Logistic Regression

The logit function is:

logit(b) = log
b

1− b (57)

11



The inverse logit function is the logistic sigmoid function:

logit−1(a) =
1

1 + exp(−a)
=

exp(a)

1 + exp(a)
(58)

With two categories, there is only a single parameter vector β0. Logistic regression is so-called
because in this case, the logit (log odds) of the probability is a linear function of the input x:

β0 · x = logit(p(0 | x)) (59)

= log
p(0 | x)

1− p(0 | x)

= log
p(0 | x)

p(1 | x)

The probability of outcome 0 is the logistic transform of the linear predictor:

p(0 | x) = logit−1(β0 · x) (60)

=
exp(β0 · x)

exp(β0 · x) + 1

D k Versus (k − 1) Parameter Vectors

Some presentations of multinomial logistic regression assume k parameter vectors rather than
k − 1. This simplifies the definition of probability to:

p(c | x, β) =
exp(βc · x)

Zx
(61)

for all c < k with partition function:

Zx =
∑
c<k

exp(βc · x) (62)

If βk−1 = 0, this definition reduces to equations (1) and (3), because:

exp(0 · x) = exp(0) = 1 (63)

The addition of an extra parameter vector βk−1 does not increase the class of distributions
that can be represented. For simplicity, consider the binary case (k = 2) with two parameter
vectors β0 and β1:

exp(β0 · x)

exp(β0 · x) + exp(β1 · x)
(64)

=
exp(−β1 · x) exp(β0 · x)

exp(−β1 · x)(exp(β0 · x) + exp(β1 · x))

=
exp((β0 − β1) · x)

exp((β0 − β1) · x) + exp((β1 − β1) · x)

=
exp((β0 − β1) · x)

exp((β0 − β1) · x) + 1

The resulting distribution is equivalent to the model with a single parameter vector (β0 − β1).
Any linear interpolation between 〈β0 − β1, 0〉 and 〈0, β1 − β0〉 results in the same classification
distribution.

The above shows that the parameters are not uniquely identified in the k-parameter vector
maximum likelihood setting. With proper Gaussian or Laplace priors, a unique solution is
identified. For instance, with a Gaussian prior σ2 for all dimensions, the MAP solution will
have the length of β0 and β1 being equal.
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E Bayes Optimal Decision Boundary

A first-best classifier predicts a single category b for an input x. If the real category is c, the
0/1 loss for this case is:

Err0/1(c, b) = 1− I(c = b) =

{
0 if c = b

1 if c 6= b
(65)

The lowest expected 0/1 loss is called the Bayes rate and is achieved by choosing the most likely
category:

classify(x) = arg max
c

p(c | x, β) (66)

Taking βk−1 = 0 for convenience (see appendix D), this reduces to taking the category with the
largest linear predictor:

arg max
c

p(c | x, β) = arg max
c

exp(βc · x)

Zx
(67)

= arg max
c

exp(βc · x)

= arg max
c
βc · x

In the two-category case, where there is a single parameter vector β0, the Bayes optimal
decision rule reduces to:

classify(x) =

{
0 if β0 · x > 0

1 if β0 · x ≤ 0
(68)

This is the same binary decision rule used for linear discriminant analysis (LDA), perceptrons,
and support vector machines (SVM), the difference being in how the parameters β are estimated.

F Binary Features

In some data, all features are binary in the sense of taking on only two values, on and off.
Conventionally, on is coded as 1 and off as 0. If most predictors are off, the resulting input
vectors are sparse.

Given the linearity of the classifier, any two distinct numbers will work, and they may be in
any order and on any scale. If the order is reversed, the signs of the parameters will reverse to
compensate. If the scale is changed, the scale of the parameters will adjust to compensate. See
appendix K for a discussion of the effects of scaling and offset on priors.

G Generalized Feature Functions

Some presentations of logistic regression assume arbitrary inputs x ∈ X (where no assumptions
are made about X) along with a feature function φ : X → Rd mapping elements x ∈ X to
d-dimensional real vectors. This paper takes the inputs to be vectors directly without modeling
the feature function.

An even more general feature function φ : (X × {0, . . . , k − 1}) → Rd is sometimes used,
which allows the features to vary by category and input. For example, φ(x, c) might not use
the same features as φ(x, c′). In this case, every category is required to have its own parameter
vector, and the probability of a category is defined by:

p(c | x) ∝ exp(βc · φ(x, c)) (69)

Modifying features on a per-category basis amounts to setting hard priors on some features
in some categories. If the set of features is taken to be the set of all possible features in all
categories, then features that are turned off in some categories may be modeled by setting their
prior mean and variance to zero, which forces the posterior to also be zero. In implementation
terms, this requires priors to vary by category, which is a simple generalization of the algorithms
presented here.

13



H Exponential Basis Presentation

Some presentations of logistic regression use an alternative parameterization of models γ where:

γc,i = exp(βc,i) (70)

Finding optimal γc,i ≥ 0 is equivalent to finding optimal βc,i, because:∏
i<d

γxi
c,i =

∏
i<d

exp(βc,i)
xi (71)

=
∏
i<d

exp(βc,ixi)

= exp(
∑
i<d

βc,ixi)

= exp(βc · x)

Changing the basis does not affect maximum likelihood estimation, but it does change the
scale of priors. The same priors may be used if they are rescaled for the transform.

An exponential basis is convenient if features are binary and coded as 0 and 1:∏
i<d

γxi
c,i =

∏
xi 6=0

γc,i (72)

I Maximum Entropy

The maximum entropy principle is a model selection technique that favors the distribution with
the maximum entropy among all distributions that satisfy some set of constraints. Typically,
these are feature expectation constraints such as those listed in equation (39). In general,
p(c | xj , β̂) is the distribution with the maximum entropy that satisfies the constraints in
equation (39).

The entropy of a discrete distribution p(c) is defined to be the expectation under p(c) of the
log probability log p(c):

H(p(c)) =
∑
b

p(b) log p(b) (73)

If the log is base e, the units are called nats; if it is base 2, the units are called bits. The base
won’t matter here, as it only introduces a multiplicative constant.

For logistic regression, the entropy we care about is the entropy of the category distributions
over all training examples:

H(β) =
∑
j<n

H(p(c | xj , β)) (74)

With logistic regression, the maximum likelihood solution β̂ is such that it maximizes H(β):

β̂ = arg max
β

H(β) (75)

= arg max
β

H(p(c | xj , β))

= arg max
β

∑
b

p(b | xj , β) log p(b | xj , β)

The maximum entropy principle may be restated in terms of Kullback-Leibler divergence of
the implied category distributions relative to the prior category distributions. The Kullback-
Leibler divergence of p′(c) from p(c) is:

DKL(p(c) ‖ p′(c)) =
∑
b

p(b) log
p(b)

p′(b)
(76)

=
∑
b

p(b)
(
log p(b)− log p′(b)

)
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=
∑
b

p(b) log p(b)−
∑
b

p(b) log p′(b)

= H(p(c)) +H(p(c), p′(c))

where the cross-entropy is defined to be the negative expectation under p(b) of log p′(b):

H(p(c), p′(c)) = −
∑
b

p(b) log p′(b) (77)

The expansion of the definition shows that the KL-divergence of p′(c) from p(c) is equal to the
entropy of p(c) minus the cross-entropy of p′(c) under p(c). Gibbs’ inequality states:

DKL(p(c) ‖ p′(c)) ≥ 0 (78)

with equality if and only if p(c) = p′(c). Thus the cross-entropy is always greater than or equal
to the (self-) entropy.

The maximum likelihood estimate β̂ is not only maximum entropy, but also minimizes KL-
divergence from a uniform category distribution:

Uniform(k)(c) =
1

k
(79)

The uniform distribution contributes only a constant to the denominator of the log equal to its
entropy:

DKL(p(c) ‖ Uniform(k)(c)) =
∑
b

p(b) log
p(b)

Uniform(k)(c)
(80)

=
∑
b

p(b) log
p(b)

1/k

=
∑
b

p(b) (log p(b) + log k)

=
∑
b

p(b) log p(b) +
∑
b

p(b) log k

= log k + H(p(c))

Thus the KL-divergence is minimized at the same β̂ as the entropy.
Logistic regression with priors may be modeled by an appropriate choice of baseline distri-

bution against which to measure divergence.

J Kernelization

In the stochastic gradient algorithm, the parameter vectors βc are initialized to zero and updated
by:

βc ← βc + ηexj(I(c = cj)− p(c | xj , β)) + ηe∇c ErrR(β, σ2) (81)

The gradient of the log likelihood contributes a linear multiple of an input vector xj . Ignoring
the gradient of the prior, the maximum likelihood estimate β̂c is a linear combination of the the
training inputs xj :

β̂c =
∑
j<n

αc,jxj (82)

where:
αc,j =

∑
e

ηe(I(c = cj)− p(c | xj , βe,j)) (83)

with βe,j the values of β in epoch e before evaluating training case j.
The training data vectors xj which make non-zero contributions to the trained parameter

vectors are called support vectors. Without some kind of thresholding, logistic regression will
use every training data vector for support. The more step-like loss functions used for perceptrons
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(0/1 loss) and support vector machines (hinge loss), typically lead to a sparse set of support
vectors.

With the Laplace prior, the reuslt is still linear in the inputs if there is an intercept feature
(see appendix K).

The kernelized version of the optimization problem is to directly optimize the αc,j param-
eters. The kernel optimization problem can be stated purely in terms of inner products of the
training data points xj · xm, because:

β̂c · xm =

(∑
j<n

αc,j xj

)
· xm (84)

=
∑
j<n

αc,j(xj · xm)

With this kernelized form of optimization, we can introduce an expansion or transformation
of our basis using an arbitrary function on vectors φ : Rd → Rf . The kernel function then
replaces the dot-product in the algorithm:

K(xj , xm) = φ(xj) · φ(xm) (85)

The “kernel trick” allows us to compute the kernel function implicitly without transforming
the bases and computing the potentially very large dot product φ(xj) ·φ(xm). It is even possible
to map input vectors to infinite-dimensional representations in some cases. In practice, users
tend to stick to fairly simple kernels, such as the (inhomogeneous) polynomial kernels of degree
r ≥ 1:

K(xj , xm) = (xj · xm + 1)r (86)

or the spherical Gaussian radial basis kernels with variance σ2:

K(xj , xm) = exp(−
∑
i<d(xj,i − xm,i)

2

2σ2
) (87)

Mercer’s theorem tells us that for both of these cases (and many more), there exists a function
φ such that K(xj , xm) may be defined according to equation (85).

K Intercept and Variance Normalization

It is common to set aside one dimension in the d-dimensional inputs as an intercept feature. By
convention, the intercept feature is the first element of an input vector, and its value is set to 1:

xj,0 = 1 (88)

With this feature set to a constant value, the parameters βc,0 are intercepts in the sense that:

βc · x = βc,0 +
∑

0<i<d

βc,i xi (89)

It is also common to center inputs to have zero means and scale them to have identical
(typically unit) variance. This is accomplished by replacing elements with their z scores. For
dimension i < d, let µ̂i be the mean of the xj,i and σ̂2

i be the variance of the xj,i:

µ̂i =
1

n

∑
j<n

xi,j (90)

σ̂2
i =

1

n

∑
j<n

(xi,j − µ̂i)2 (91)

The z-transform then maps:

z(xj,i) =
xj,i − µ̂i

σ̂i
=
xj,i
σ̂i
− µ̂i
σ̂i

(92)

The resulting sequence values 〈z(x0,i), . . . , z(xn,i)〉 has a zero mean, unit variance, and unit
standard deviation.

16



Applied explicitly, centering by subtracting the mean value will destroy sparsity in the algo-
rithm because of the offset term −µ̂i/σ̂i.

The main motivation for centering is to be able to choose a prior with mean zero. With a
fixed intercept feature with an uninformative prior, the intercept coefficient can absorb all of
the constant offsets −µ̂i/σ̂i without changing the error function. Thus centering may be done
implicitly.

The z-transform itself is linear, so it does not have any effect on maximum likelihood es-
timates. Assuming an intercept feature in the input, the maximum likelihood estimate for
normalized inputs simply rescales the parameters by the deviation σi for dimension i and shifts
the intercept parameter by µ̂i/σ̂i.

The MAP solutions with Gaussian, Laplace or Cauchy priors are not equivalent under rescal-
ing of inputs. Setting aside the intercept input, the other parameters will be equivalent if the
priors for input dimension i < d are rescaled by σ̂i.

The main motivation for variance normalization is to be able to choose a single prior variance
τ2 for every dimension. With the ability to set prior variances per dimension, the same effect is
achieved by scaling τ2 by σ̂2

i , defining the prior for dimension i to be τ2/σ̂2
i .

L To-Do

L.1 Graphs

• prior distributions overlayed (a la Gelman et al.)

• coeffs vs. prior (a la Hastie et al.)

• total log likelihood training + held out

• posterior parameter distro (a la Goodman)

L.2 AKA

lasso, ridge, shrinkage, regularization
sequential gradient descent, pattern-based gradient descent
softmax, 1-level perceptron with sigmoid activation and log loss, exponential model, log-

linear model, generalized linear model

L.3 Add

matrix notation for gradient and Hessian
alternative ci ∈ {−1, 1} notation plus δφ delta functions.

References

Textbooks

1. Bishop, Christopher M. 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

2. Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.

3. Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 2003. Bayesian
Data Analysis, 2nd Edition. Chapman-Hall.

4. Gelman, Andrew and Jennifer Hill. 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

5. Hastie, Trevor, Robert Tibshirani, and Jerome Feldman. 2001. The Elements of Statistical
Learning. Springer.

6. MacKay, David J. C. 2003. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.

17



Tutorials
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Input

k number of output categories k ∈ N, k > 1
d number of input dimensions d ∈ N, d > 0
〈σ2
i 〉i<d prior variances σ2

i ∈ R, σ2
i > 0

〈xj , cj〉j<n training data xj ∈ Rd, cj ∈ {0, . . . k − 1}
m maximum number of training epochs m ∈ N, m > 0
ε minimum relative error improvement per epoch ε ∈ R, ε > 0
η0 initial learning rate η0 ∈ R, η0 > 0
δ annealing rate δ ∈ R, δ > 0

Output

〈βc〉c<k−1 model parameters βc ∈ Rd

β ← 0
for e← 0 to m− 1 do

ηe ← η0
1 + e/δ

for j ← 0 to n− 1 do
Z ← 1 +

∑
c<k−1 exp(βc · xj)

for c← 0 to k − 2 do
p(c | xj , β)← exp(βc · xj)/Z
βc ← βc + ηe(∇c Err`(xj , cj , β) + ∇c ErrR(β,σ2)

n )

`e = −
∑
j<n−1 log p(cj | xj , β) + ErrR(β, σ2)

if relDiff(`e, `e−1) < ε then
return β

∇c Err`(xj , cj , β) = xj (I(c = cj)− p(c | xj , β))

∇c,i Errml(β, σ2) = 0

∇c,i ErrL2(β, σ2) = −βc,i

σ2
i

∇c,i ErrL1(β, σ2) = −
√

2 signum(βc,i)
σi

∇c,i Errt1(β, λ) = − 2βc,i

β2
c,i+λ

2
i

relDiff(x, y) = | x− y |
| x | + | y |

Algorithm 1: Stochastic Gradient Descent
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Input

k number of output categories k ∈ N, k > 1
d number of input dimensions d ∈ N, d > 0
〈σ2
i 〉i<d prior variances σ2

i ∈ R, σ2
i > 0

〈xj , cj〉j<n training data xj ∈ Rd, cj ∈ {0, . . . k − 1}
m maximum number of training epochs m ∈ N, m > 0
ε minimum relative error improvement per epoch ε ∈ R, ε > 0
η0 initial learning rate η0 ∈ R, η0 > 0
δ annealing rate δ ∈ R, δ > 0

Output

〈βc〉c<k−1 model parameters βc ∈ Rd

β ← 0
u← 0
q ← 0
for e← 0 to m− 1 do

ηe ← η0
1 + e/δ

for j ← 0 to n− 1 do
Z ← 1 +

∑
c<k−1 exp(βc · xj)

for i such that xj,i 6= 0 do
for c← 0 to k − 2 do

βc,i ← βc,i + ηe
ui−q
n ∇c,i ErrR(βc,i, σ2)

ui ← q

for c← 0 to k − 2 do
p(c | xj , β)← exp(βc · xj)/Z
βc ← βc + ηe ∇c Err`(xj , cj , β)

q ← q + 1
`e = −

∑
j<n−1 log p(cj | xj , β) + ErrR(β, σ2)

if relDiff(`e, `e−1) < ε then
return β

Algorithm 2: Lazy Stochastic Gradient Descent
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